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Abstract—Virtual Reality (VR) technology has progressed
rapidly and is used in various domains, particularly games.
Simulator Sickness (SS) still represents a significant problem for
its wider adoption. The most common way to detect SS is using
the Simulator Sickness Questionnaire (SSQ). SSQ is a subjective
measurement and is inadequate for real-time applications such as
VR games. This research aims to develop a model to predict SS
in real time using in-game characters’ movement and users’ eye
motion data during gameplay in VR games. To achieve this, we
designed an experiment to collect such data with three types of
games. We trained a Long Short-Term Memory neural network
with the eye-tracking and character movement data to predict
SS. Our model can predict SS in real time with an accuracy of
83.4% for players who suffer from severe sensitivity to SS. Our
results indicate that, in VR games, our model is an accurate and
efficient method to predict SS in real time.

Index Terms—Virtual Reality, Simulator Sickness, Gaming,
Real-time Prediction, Machine Learning, In-game Character and
Eye Movement Data.

I. INTRODUCTION

Virtual Reality (VR) technology has been growing in the last
decade, especially in the last few years, with the proliferation
of inexpensive consumer Head-Mounted Displays (HMDs).
Despite the advances, Simulator Sickness (SS) remains a
constraint and challenge and has a negative effect on the broader
adoption of VR [1], [2]. Many people cannot use VR devices
for a long time due to SS-related symptoms [3]–[5]. As such,
there are significant benefits in finding methods to predict,
minimize, and eliminate SS in VR applications, especially in
games.

The most common method to assess SS is the Simulator
Sickness Questionnaire (SSQ) [6], [7]. It can be used to
quantify SS for activities that could lead to SS symptoms.
However, it is not possible to quantify real-time SS for VR
environments with SSQ. Although new SS assessment methods
have been proposed to address this [8], [9], they require special
sensors, for example, to capture Electro Dermal Activity (EDA),
Heart Rate (HR), and electroencephalogram (EEG) data. These
sensors are often not integrated into current consumer-level
VR HMDs.
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In this research, we proposed a simple and low-cost
method that could achieve real-time SS prediction with current
consumer-level VR HMDs that have built-in eye trackers (e.g.,
FOVE, HTC VIVE Pro Eye, and PICO NEO 2 Eye). Eye-
tracking has now been widely used in consumer-level VR
HMDs because it provides additional possibilities for VR
devices like gaze interaction and facial expression detection
[10]–[12].

SS is a type of motion sickness caused by movement in the
environment perceived by the visual system [13]–[15]. The
etiology, or cause of motion sickness, involves three possible
factors: reflexive eye movements (EM), sensory conflict (SC),
and postural instability (PS) [13]. The eyes receive most of
the stimulation when users interact with VR applications like
games. Character movement data (e.g., position, velocity, Euler
angle, and angular velocity data from character and HMD) also
relates to SC since the motion in the perceived environment is
apparently one of its causes [13]. In our approach, we record
character movement and eye-tracking data from users playing
three different VR games. The data is then used to train and
develop models to predict SS during gameplay in real time.

One of the most significant challenges in SS prediction
is to quantify it objectively and extract its features. In this
research, we propose using new features to identify SS in
VR environments. Based on our review of the literature,
we hypothesize that two in-game features (intense character
movement and negative eye movement (i.e., longer average
blink and fixation durations [16])) are highly linked to SS: (1)
H1: Eye tracking data can be used to predict SS since SS may
cause negative eye movement; and (2) H2: Character movement
data can be used to predict SS since intense character movement
may cause SS [13], [17]. We used a novel labeling method to
break real-time gaming events into classifiable events, which
in turn can be used to train a model and subsequently predict
SS in VR games. Analysis of time series data often requires
high throughput machine learning (ML) [18]. Real-time SS
prediction based on sequential data also requires sequential
modeling, which is also a problem of multi-step forecasting for
multivariate time series for the eye and character movement data
in our case. Therefore, we used a Long Short-Term Memory
(LSTM) neural network [19] for training our dataset because
it is an efficient method for sequential modeling.

Games are important applications in VR. However, unlike in
typical 2D displays, VR games can commonly bring symptoms
of SS in many users [20], [21]. For this study, we developed
three different VR games that can stimulate SS during gameplay
and used them to collect the data used to train our model. We
chose these VR games because they can produce different SS
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levels depending on changes in viewing perspective, movement
trajectory, and speed during gameplay [22].

Our game recordings (dataset) of participants’ gameplay
sessions have been used to link character movement and eye-
tracking data and place them along the same timeline. This
is helpful for further analysis to detect salient events during
gameplay across sessions and for different participants. Part of
the game data recordings was used to train our LSTM neural
network.

The main contribution of this paper is that we proposed a
novel method for real-time SS prediction in VR games based
on players’ eye motion and in-game character movement data
during gameplay. We used an LSTM neural network to train
our model using eye and character movement data. To the best
of our knowledge, we are the first to use both eye movement
and character movement data together. This model can be used
to improve the gaming experience in real time whenever SS is
predicted during gameplay.

II. RELATED WORK

In this section, we review previous research on Simulator
Sickness (SS) and approaches to detect SS.

A. Simulator Sickness

SS affects a significant number of VR users at different
levels. Its causes are still being investigated. Theories suggest
that it is caused by eye movements and sensory conflicts [13].
However, it is difficult to pinpoint when exactly people start
feeling sick in VR, especially in games. Works that try to
identify the cause of sickness in VR rely on correlating results
from after playing the game with activities performed during
gameplay [23], [24].

The problem of the most widely used method to assess
SS (i.e., SSQ) is that it cannot be applied to detect SS in
real time. Hence, studies have been conducted to allow real-
time detection of SS using various psychophysiological data.
Most approaches use machine learning techniques to analyze
such data recorded from VR environments [8], [9]. However,
they can be cumbersome and expensive because they rely on
equipment that is not naturally integrated into VR (e.g., EEG,
EDA, and HR sensors).

Even though many theories suggest that visual input is
closely related to SS [13], [16], [25], to the best of our
knowledge, no study has looked into using eye movement
and character movement to infer SS in VR HMDs. The closest
is [26], in which the authors investigated changes in people’s
pupils to detect SS and emotional changes.

Eye tracking has become popular in VR due to the possibility
of using the data in applications [10]–[12]. There are now
many consumer-level VR HMDs that come integrated with eye
trackers (e.g., FOVE, HTC VIVE Pro Eye, and PICO NEO 2
Eye). So, using eye-tracking to infer SS requires no additional
hardware and may yield positive results, looking directly into
one of the sources of SS.

B. Simulator Sickness Detection

1) Internal Psychophysiological Data: Sensory conflict is
one of the possible causes of SS and can affect the state of
the brain [13]. Research has shown that EEG can be used
to assess SS levels, similar to using SSQ data [27]. EEG
data can show the different states of the brain [28]. Jeong et
al. reported an approach to detect SS with EEG data using
Deep Learning algorithms, which could achieve accuracies of
above 90% [8]. They found and detected SS patterns from
the image of raw EEG data and calculated band powers of
EEG signals. Other techniques to detect SS involve the use of
several psychophysiological features. For example, Nam et al.
used EEG, Electrooculogram (EOG), Electrocardiogram (ECG),
Fingertip skin temperature (SKT), Photoplethymogram (PPG)
and Skin conductance (SCL) as input in their artificial neural
network, which can achieve a minimum mean square error of
0.09) [29]. Gardé et al. used EDA and ECG to demonstrate the
vibro-kinetic seat can cause lower SS [30]. Garcia-Agundez et
al. used EOG, ECG, respiratory effort, galvanic skin response
(GSR) to detect SS with support vector machines (SVM),
which can achieve a SS detection accuracy of 81.8% [31].
Even though their results are positive, their data collection
requires individual sensors, which are difficult and expensive
to be included in today’s consumer-level VR HMDs.

Other research that used composite psychophysiological
data (e.g., [9], [32]) had low success rates when using fewer
features (i.e., only EDA and Blood Pulse Volume). Their
model can explain only 48% of the SS in VR, which has
a much lower accuracy than other models. This means that
using such methods is currently inefficacious, inefficient, or
expensive. Thus, we want to investigate alternatives that require
fewer devices and sensors (i.e., low-cost) and that are closer
to the problem, so that results are more straightforward and
inexpensive to achieve. Our method can achive an accuracy of
83.4% without the use of extra sensors that can be expensive
and difficult to include in today’s HMDs and can bring
inconveniences to users.

2) Eye-tracking Data: Nowadays, many VR HMDs have eye
trackers integrated into them to capture and record users’ eye
movements. SS can produce changes in users’ eye movements
as a natural response [13]. Research has shown that there is
a correlation between SS and specific eye movements (e.g.,
number of blinks) [33]. More prolonged VR HMD exposure
can cause a significantly greater number of blinks (in contrast
to using a desktop monitor, for example). There are significant
correlations between the average number of blinks and SS [33].
This means eye movement data may contain some features of
SS.

The correlation between eye behavior and SS further supports
the use of eye-tracking devices to detect early onset SS. If
these user behaviors can be extracted as features to be fed to a
Machine Learning model, it can potentially identify if someone
is getting sick in real time. However, VR games are complex
and involve a series of other behaviors that might interfere
with the results. As such, their result cannot be immediately
applied [16]. We propose to investigate associations of eye
movements and other in-game behaviors for results with higher
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Fig. 1. Screenshots of the three VR games used in our experiment for
data collection. (A) Racing Car: driving around along the track. (B) Parkour:
collecting all gold coins by jumping from building to building. (C) Space
Miner: mining gold asteroids in space.

prediction accuracy.
Our method can achieve SS prediction in real time using a

commercial VR HMD with eye-tracking capabilities. To our
knowledge, our dataset is the first one to analyze both eye
movement data and character movement data. Our results show
that this combination can help the analysis and prediction of
SS for at least one kind of application, VR games.

III. DATA COLLECTION

A. The Three VR Games

We developed three VR games using Unity3D to collect eye
motion and in-game character movement data during gameplay
(see Figure 1). We created a series of games and ran some pilot
studies to arrive at the three games. The results of the pilot
studies showed that they could produce character movement
that is intense and at a level that can stimulate SS in users.
Our pilot run showed that these three VR games could produce
enough SS stimulation with different levels during gameplay.
To record possible SS symptoms, no SS reduction techniques
have been applied to these VR games. Racing Car (see Figure 1
a) is a first-person perspective (1PP) VR game in which a player
needs to drive around a track. One round takes about 4 minutes
to complete. The primary SS stimulation was the 2D (x and y)
motion in the environment. Parkour game (see Figure 1 b) is a
1PP VR game, where a player needs to jump from roof to roof
to collect gold coins. One round takes about 4.5 minutes to
finish. Space Miner (see Figure 1 c) is a third-person perspective
(3PP) VR game, and a player needs to pilot a starship to mine
gold asteroids. One round takes about 17 minutes to finish. The
primary SS stimulation of Parkour and Space Miner is 3D (x,
y, and z) motions when moving in the two environments (e.g.,
Parkour requires the player to jump from roof to roof while
Space Miner requires movement with three dimensions: roll,
pitch, and yaw; see player paths in Figure 2). Racing Car and
Parkour both use a typical humanoid avatar (in 1PP), while
Space Miner is based on a 3PP of a spaceship. Although 3PP
VR games (e.g., Lucky’s Tale and Chronos) are not as popular
as 1PP VR games (e.g., Beat Saber), the former types of games
are still common in VR and represent an important category of
games. As such, we decided to include at least one such game
so that both 3PP and 1PP VR games are explored. Table I
summarizes the features of the three games for comparative
purposes. In our experiment, the participants were told to play
a specific VR game for 7 minutes, excluding pause time. Based
on our pilot runs, 7 minutes of gameplay can produce enough
SS stimulation because the exposure time of similar research
ranges from 1 to 5 minutes [8].

Fig. 2. Player paths (orange lines) in z-x (left figures) and z-y (right figures)
plane recorded from one participant. (A) Racing Car. (B) Parkour. (C) Space
Miner.

B. Experiment

1) Participants: We recruited 20 volunteers from a local
university campus. There were 14 males and 6 females whose
ages ranged between 18 and 27, with an average age of
20.4±1.93. They all had normal or corrected-to-normal eyesight
and had no history of color blindness or mental/physical
issues. They all consented to participate in the experiment
voluntarily. The experiment was conducted in accordance
with the guidelines and regulations of the University Ethics
Committee at Xi’an Jiaotong-Liverpool University.

2) Apparatus: The HTC VIVE Pro Eye was used as the VR
HMD for the experiment. It supports eye-tracking and full VR
functions. The eye trackers have a spatial accuracy of 0.5° to
1.1° and support capturing gaze data with a frequency of 120
Hz, a trackable field of view of 110°, and 5-point calibration 1.
It was connected to a computer with 16 GB RAM, a GeForce
GTX 1080 Ti GPU, and an Intel Core i7-7700k CPU. The input
device used in the experiment was two HTC VIVE controllers.
We collected all movement data of the VR HMD and character,
such as position, velocity, Euler angles, and angular velocity.
The character’s movement data can be used in the playback of
the gameplay sessions.

3) Procedure: Each participant was assigned a specific order
of VR games in which he or she would play. The orders had
been formed through a 3×3 Latin Square to mitigate carry-over
effects. Participants needed to calibrate the eye tracking device
and fill out a questionnaire to collect demographic and past VR
and gaming experience information before the first VR game.
A dataset that contains eye-tracking and character movement
data would be recorded during gameplay (see the gameplay
time in subsection III-A).

Previous research about SS has shown that closed eyes can
subside sickness [34]–[36]. Therefore, the participants were

1https://www.vive.com/uk/product/vive-pro-eye/specs/
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TABLE I
FEATURES OF THE THREE VR GAMES USED IN THE DATA COLLECTION. 1PP: FIRST-PERSON PERSPECTIVE; 3PP: THIRD-PERSON PERSPECTIVE.

Game Character Player Task Control Method SS Stimulation

Racing Car Humanoid avatar (in 1PP) Driving around along a track Left joystick on the y axis: acceleration
Right joystick on the x axis: steering 2D motion

Parkour Humanoid avatar (in 1PP) Jumping from roof to roof
to collect gold coins

Left joystick on both x and y axis: walking
left trigger: jumping

right joystick on the x axis: rotation
3D motion

Space Miner Spaceship (in 3PP) Piloting a starship
to mine gold asteroids

Left joystick on both x and y axis: flight attitude
Left trigger: acceleration

Right trigger: laser mining
3D motion
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Fig. 3. Game recordings sorted by SS level (number of valid SS tags). Each
bar represents how many valid SS tags that session had.

told to close their eyes immediately when they felt any SS
symptoms; we explained SS symptoms to our participants
before the experiment. These symptoms include nausea, sweat-
ing, vertigo, and dizziness. The game was then paused if the
participants closed their eyes for at least 0.5 seconds. The game
would continue by clicking a button on the controller after the
participants opened their eyes for 3 seconds. The participants
were told not to continue the game unless they felt better. After
each game, the participants were required to rest for at least
one night to prevent the accumulation of SS. Each participant
needed at least 3 days to complete the experiment.

C. Results of Data Collection

54 game recordings (dataset) were collected from all 20
participants. Three male participants failed to complete the
whole experiment and only played one VR game. They could
not finish all VR games due to their strong reaction to SS
stimulation. As mentioned in subsubsection III-B3, the trigger
for pausing was 0.5 seconds of closed eyes, and the game could
continue after the participants opened their eyes for 3 seconds
in each pause. Thus, the theoretical minimum pause was 3.5
seconds. However, if the participants paused the game due to
a strong SS stimulation, they would need longer to recover
from the symptoms of SS. Therefore, we use 5 seconds as the
threshold for a valid pause caused by a strong SS stimulation.
To improve the quality of SS tags, each pause longer than 5
seconds was considered a valid SS tag.

Figure 3 shows the results of valid SS tags from the 54
game recordings. 15 (27.8%) game recordings had no valid
SS tags. As expected, participants with higher SS sensitivity
would produce more valid SS tags (that is, game pauses due to
a high level of SS). In our case, SS sensitivity was from the SS
symptoms of participants displayed during the experiment and
their interview after the experiment. Therefore, the SS levels
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Fig. 4. Participants sorted by the maximum number of valid SS tags. The letter
represents the SS sensitivity level of all participants. For example, Participant
A has the highest SS sensitivity level (the highest number of valid SS tags).

of game recordings were classified by the number of valid SS
tags. High, medium, and low SS levels means more than 10
tags, between 8 to 10 tags, and less than 8 tags, respectively.
SS level is used as a metric of dataset quality to choose a
better dataset for model training. Only high and medium SS
level recordings (top 12 game recordings) would be used as
the dataset for neural network training because of the higher
ratio of SS tags and more evenly distributed SS events. Pause
tags are also important to maintain the integrity of the time
series data used in model training and input data feeding. The
other reason is that we recommended participants to pause and
get some rest after predicting SS events.

All 20 participants were sorted by the maximum number of
valid SS tags and assigned a letter of the alphabet. Participant
A had both the maximum number of valid SS tags and the
highest average number of valid SS tags. Participants with a
high maximum number of valid SS tags would usually have a
high average number of valid SS tags also. The trend observed
in Figure 4 is similar to the pattern in Figure 3 (i.e., participants
with higher SS sensitivity produced more valid SS tags).

For the 17 participants who completed all 3 games, the
average SS tag numbers of Parkour, Space Miner, and Racing
Car were 6.64, 3.71, and 3.24, respectively. Parkour produced
more SS stimulated symptoms than the other two games. For the
12 high and medium SS level recordings, the ratio of Parkour,
Space Miner, and Racing Car was 6:3:3 and was related to the
average SS tag numbers. We collected demographics and past
VR and gaming experiences from the pre-questionnaire. Most
participants (40%) had some experience with VR (that is, had
seen it or interacted with it before). Most participants (50%)
played video games twice or more a week. Most participants
(40%) preferred to pause the game and take a break when SS
symptoms happened during the VR experience.
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TABLE II
SUMMARY OF THE EYE-TRACKING AND CHARACTER MOVEMENT DATA.

Data Number Unit

Euler angle of HMD (x y z) 3 °
Euler angle of character (x y z) 3 °

Angular velocity of HMD (x y z) 3 °/s
Angular velocity of character (x y z) 3 °/s

Position of HMD (x y z) 3 m
Position of character (x y z) 3 m

Velocity of HMD (x y z) 3 m/s
Velocity of character (x y z) 3 m/s

Raw eye movement data 13 unitless(0 to 1)
Magnitudes of eye acceleration speed 2 unitless

Magnitude of character acceleration speed 1 m/s2

Magnitude of character angular acceleration 1 °/s2

sum 41
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Fig. 5. Labelling method for model training. The original events are real-time
events. The new events are left shift (future) original events which are the
final input events for model training.

IV. MODELLING USING EYE AND CHARACTER MOVEMENT
DATA

A. Dataset and Model

The dataset contains 41 types of data from eye tracker, HMD
(the motion data of the HMD was captured from the character
camera), and character: Euler angles (6), angular velocities
(6), positions (6), velocities of HMD and character (6); raw
eye movement data (13), magnitudes of eye acceleration speed
(2), magnitudes of character acceleration speed and character
angular acceleration (2) (see Table II). The magnitude of eye
acceleration speed was calculated from 13 types of raw eye
movement data recorded from the HTC VIVE Pro Eye SDK
2. Magnitudes of character acceleration speed and character
angular acceleration were calculated using the virtual sensor
script in the VR games.

The range of values of different raw data types varies widely.
Therefore, min-max normalization was applied to the dataset
to rescale the data within the range of 0 to 1 before inputting
the model [37].

1) Labelling Method: The aim of this research is to predict
SS in real time. However, there is not an accurate method to
label SS tags since SS is not a discrete state. Therefore, we turn

2https://vr.tobii.com/sdk/develop/unity/getting-started/vive-pro-eye/

Fig. 6. Example of an input frame for LSTM model training. The size of
sliding window is 6 seconds. The final input frame consists of 6 * 90 stacked
raw frames.

Fig. 7. Model architecture of our model for SS prediction

it into a problem of multi-step forecasting for multivariate time
series for the eye and character movement data [38]. There are
two event IDs in the raw dataset: 0 denotes normal gameplay,
and 1 represents the pause state. Long blinks (which are the
trigger of pauses) are classified into event 0 to prevent mixed
patterns between events 0 and 1. For instance, the original
events in Figure 5 mean two pause state periods among three
normal gameplay periods. The predicted events are left shift
(future) original events shown in Figure 5. Therefore, the
model tries to predict future pause states, which represent the
consequence of SS and game states. The red line in Figure 5
represents the difference between the original events and the
predicted events.

2) Model Architecture and Configuration: Figure 6 shows
the structure of input frames for training the model. One second
contains 90 raw frames of raw data. Each input frame contains
6 seconds of raw data with an interval of 1 raw frame. In
other words, the throughput is 90 input frames per second. A 6
seconds input frame (6 * 90 raw frames) also means the input
buffer cannot get enough raw frames to fill one input frame
in the first 6 seconds in real-time applications. However, the
length of the input frame is also an adjustable parameter.

Figure 7 shows the whole architecture of our LSTM model,
which is a special kind of recurrent neural network that can
learn long-term patterns from continuous data [19]. Our model
has 1 hidden layer and 125 hidden units (decided by parameter
optimization); its input is shown in Figure 7. Its output is one
of the two event IDs cited in subsubsection IV-A1. Given that
different players and games would have different SS patterns on
the eye and character movement dataset, each game recording
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Fig. 8. Results of prediction length tuning on game recordings from Participant
A who has the highest number of valid SS tags in all the 3 different VR games.
They show that the accuracy did not drop in the first 0.3 seconds (indicated
by the vertical line).

was trained separately.
The dataset would not be split randomly to prevent non-

existent new time series patterns which did not exist in the
actual time series data since we are using LSTM to forecast
time series data. Training and testing datasets were the first
70% and the last 30% of data from the recordings of the same
game, respectively.

B. Evaluation of the Model for SS Prediction

1) Results of Prediction Length Tuning: Figure 8 shows
the results of prediction length tuning on A23P, A11R,
and A16S—letter A means Participant A, the number next
represents the number of valid tags, and the last letter means
the game (P for Parkour, R for Racing Car, and S for Space
Miner). The fitted curves are used to clarify the scatter points
and show the trends. As can be observed in Figure 4, Participant
A contributed the best (most valid SS tags) game recording
in all 3 VR games. Accuracy is defined as the percentage
of correct predictions in all predictions for the corresponding
events. The results show that the accuracy did not drop sharply
in the first 0.3 seconds. Therefore, we try to use 0.3 seconds
as the prediction length for all other game recordings. Figure 8
also shows that the model can get higher and tighter accuracy
lines on game recordings with a high SS level (A23P and
A16S). Although the accuracy lines of A11R are not as tight
as the lines of A23P and A16S, their 3 accuracy lines are still
above 0.9.

There are two event IDs (normal gameplay and pause state),
as mentioned in subsubsection IV-A1. The aim of a prediction
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Fig. 9. Testing results of the model trained on Participant A, with 23 valid
tags, using the Parkour game and a prediction length of 0.3 seconds.
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Fig. 10. Testing results of the model trained on Participant A, with 23 valid
tags, using the Parkour game and a prediction length of 1.6 seconds.

length of x seconds is to predict future states in the next x
seconds. For both Figure 9 and Figure 10, the middle green line
denotes the predicted result. The red line is the visualization of
the difference between original events and predicted results. The
green line segments below the red line represent a successful
prediction of future pause states in the next x seconds, which
also shows how to use the model to predict and respond to
pause states in games. For example, the developers can design
predefined actions in response to the prediction result when
the green line segments come up.

Figure 9 shows the testing results of the model trained on
A23P with a prediction length of 0.3 seconds. It shows that the
model can predict future pause states, which are consequences
of SS, in 0.3 seconds. Although there are a few false positives
predicted results, it still can predict all 6 pauses before they
happen. Figure 10 shows the testing results of the model trained
on A23P with a prediction length of 1.6 seconds. It reveals
the distribution of false positives and the reason for the drop
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Fig. 11. Testing dataset results of recording-independent models trained on
the top 12 game recordings from Participants A to H with a prediction length
of 0.3 seconds.

in accuracy in longer prediction lengths. There are more false
positives in-game states. In addition, only half of 6 pauses
can be predicted in 1.6 seconds. Although a longer prediction
length is possible, the accuracy drops with prediction length.
This is the secondary reason for using 0.3 seconds as the
prediction length for all other game recordings.

2) Results on All Datasets: The model trained on the whole
dataset has worse performance than the model trained on a
single game recording (recording-independent model) due to
the non-existent new patterns among different game recordings
in the whole dataset. Therefore, we will focus on evaluating the
recording-independent model in the following section. Figure 11
(A23P to D8R are the names of the top 12 game recordings
in Figure 3) shows the testing dataset results of the model
trained with a prediction length of 0.3 seconds. The model has
a good performance on all events from all three VR games.
The model can be used to predict SS for different games and
players. It has a better performance on game recordings with
a high SS level (A23P to D11P). Because A23P has the most
valid SS tags, it gives us also best testing results.

3) Generalization of Recording-independent Models: Fig-
ure 12 shows the overall result of k-fold Cross-Validation
(CV) on the model using the same model configuration from
Figure 11 [39]. Due to space constraints, it is difficult to put
all 38 columns of the CV results in one figure. For readability,
only the results on the datasets with high and medium SS
levels (top 12 recordings) are shown in Figure 12. Figure 12
reveals a poor performance of the model on datasets with
low SS levels (the rest 26 recordings). Therefore, recording-
independent models trained on datasets with high and medium
SS levels are better. Datasets with high and medium SS levels
are sufficient for model training. In other words, recordings
with low SS levels can be excluded from the dataset. In general,
k-fold cross-validation means that the training is done on k-1
sub samples; the testing is done on the k-th sub sample (the
larger fold was used for training and the smaller for validation).
However, we decided to use a recording-independent model
rather a model trained on datasets from different recording
sessions (see also subsubsection IV-B2). Therefore, we take
each game recording as one fold of the dataset, and the larger
fold was used for validation and the smaller for training (the
training is done on k-th sub sample; the testing is done on the
rest k-1 sub samples).

Cross-Validation of person-independent models

(from Fig. 11) on top 12 SS level recordings
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Cross-Validation of person-independent models

(from Fig. 11) on all 38 SS level recordings
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Fig. 12. K-fold Cross-Validation of the model (using the same model
configuration from Figure 11) on different datasets. The X axis denotes the
average accuracies from recording independent models (AVG means the k-fold
result of the model).

The average accuracy from recording independent models of
12 and 38 fold datasets indicates that the recording-independent
model has better generalization results on worse cases from
participants with higher SS sensitivity. The model has a SS
prediction accuracy of 83.4% on the 12 fold dataset and 69.6%
on the 38 fold dataset. This difference was caused by the
different number of SS tags between the 12 and 38 fold datasets.
Our model training method tends to have higher accuracy on
datasets with more SS tags and more evenly distributed SS
events (see subsection III-C). Moreover, the k-fold CV results
show that the model has worse generalization results if the
game recordings with lower SS levels are included in the
testing dataset. This means the model has difficulty predicting
SS for players with lower SS sensitivity. In other words, it
is also good news for players with high SS sensitivity since
they can contribute better datasets and get higher accuracies
of SS prediction. Previous research on SS detection based on
internal psychophysiological data shows weak generalization
results from person-independent models (models trained on
independent datasets consisting of recorded data from each
user rather than the whole dataset) [32]. Our results show that
participants with higher SS sensitivity can contribute data with
higher quality in their worst cases to improve the model’s
generalizability. Moreover, the model works better on players
with higher SS sensitivity. However, it was difficult to collect
such data since high SS level recordings were relatively rare
(6 of the total 54 recordings in this experiment).

Figure 13 indicates that models trained on one participant’s
dataset can also be used to predict SS for other participants
in different games. Parkour produced twice as many valid
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Fig. 13. Cross-Validation of 3 recording independent models (trained on
one participant’s dataset (A23P, A16S, and A11R) using the same model
configuration from Figure 11) on all 38 recordings grouped by input dataset
type: All dataset (A), Parkour (P), Space Miner (S), and Racing Car (R).
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Fig. 14. Feature selection result (sorted by average (total) accuracy) among all
15 possible combinations of 4 groups of raw data: Group 1: position and angle
group; Group 2: velocity and angular velocity group; Group 3: eye-tracking
group; Group 4: character acceleration group.

SS tags as the other two VR games. All 3 models have a
low pause accuracy for the Parkour game (P-A23P, P-A16S,
P-A11R—letter P means the Parkour dataset, the part after -
represents the independent model trained on the corresponding
dataset using the same model configuration from Figure 11)
compared with the other two games. The pause accuracy of all
3 models for Space Miner and Racing Car drops as the number
of SS tags (S-A23P, R-A23P, S-A16S, R-A16S, S-A11R, R-
A11R). A23P shows the best performance, even higher than
models trained on A16S and A11R recorded in the Space
Miner and Racing Car games. This also proves that the model
trained on participants with higher SS sensitivity in VR games
that can cause more SS could also achieve high performance
on participants with lower SS sensitivity in VR games that can
cause lower SS.

4) Feature Selection: For now, LSTM does not support
feature importance calculation. Instead, we used the dataset
combination instead of feature importance. The current dataset
contains 41 types of data in Table I. The training and running
of the model on such a dataset can result in high GPU
usage which affects the performance of VR games. However,
Figure 14 shows that it is possible to reduce the number of
data types in the dataset. The initial 41 data types can be split
into 4 different groups: Group 1: position and angle group
(HMD Euler angle, character Euler angle, HMD position, and
character position); Group 2: velocity and angular velocity

group (HMD angular velocity, character angular velocity,
HMD velocity, and character velocity); Group 3: eye-tracking
group (13 raw eye-tracking data, left eye acceleration, and
right eye acceleration); and, Group 4: character acceleration
group (character acceleration speed and character angular
acceleration). The 4 groups have 15 possible combinations
as shown in Figure 14. In general, C1234 > C3 > C1 >
C4 > C2. C3 is the most important feature group since all
top 8 combinations contain C3, and the performance of the
rest of the other combinations is much lower than the top 8
combinations. C3 also contributes most to the accuracy in all
single group combinations. However, C1234 (combination of
all 4 groups) still has the best performance, which supports our
hypotheses mentioned in the introduction. Although C3 is much
better than all other single group combinations, different eye-
tracking devices may provide different eye-tracking data types,
which means the performance of C3 may vary on different
eye-tracking devices. In contrast, all VR games can use the
same data types in C1, C2, and C4.

V. DISCUSSION AND FUTURE WORK

The above results provide further support for our hypotheses
mentioned in the introduction: H1: Eye tracking data can be
used to predict SS since SS may cause negative eye movement;
and H2: Character movement data can be used to predict SS
since intense character movement may cause SS [13], [17].
These two in-game features (negative eye movement and intense
character movement) exist in our dataset of eye movement data
and character movement data. In addition, the results show
that the model trained on such a dataset can be used to predict
SS. To further explain the above results, we can also assume
that there are continuous SS patterns that exist in eye and
character movement data since subsubsection IV-B1 shows
that the prediction length can be adjustable.

Our results described above lead to a promising conclusion:
the accuracies are related to the number of valid SS tags. In
other words, the model can achieve higher accuracy for players
with higher SS sensitivity (that is, those whose data have more
valid SS tags). This observation is especially interesting and
valuable since those players are the ones who are more likely
to quit or feel discouraged from using VR because of their SS
symptoms. It also means that a better dataset for this model
requires longer game recordings from players with higher SS
sensitivity. However, Figure 3 shows that game recordings with
high SS levels are rare in 7 minutes of gameplay. Although a
longer gameplay time may produce more valid SS tags, it is not
suitable since it is not ideal for players with high SS sensitivity
to have prolonged exposure to VR games. In general, a better
dataset needs more game recording sessions and participants
than a longer gameplay time. This is one aspect that can be
explored in the future.

Figure 15 shows one of the main applications of the real-
time SS detection model during gameplay. It can be used
as the basis of an AI-based negative feedback system in
VR gaming environments. Our negative feedback system of
a real-time SS detection model is similar to the Enhanced
Affective Game Loop [40], which also shows the relationship
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Fig. 15. Negative feedback system of real-time SS detection to be used to
keep balance and prolong the flow experience in the game.

between the player, physiological input, and game. The real-
time SS detection model can detect SS from a user’s real-time
eye movement plus in-game character movement data during
gameplay. Then, the VR environment can respond to the SS
feedback, possibly by reducing SS stimulation in the game.
The reduction can be made by adding SS mitigating techniques
like Rotation Blurring [41], Depth-of-Filed Blur Effects [42],
[43], 2D/3D views [44], and Gazing Cues [45] among others
[46]–[48]. Alternatively, if the situation is severe and recurrent
during gameplay, it is possible to automatically suggest users
to pause and rest using a predefined transition mechanism.

The model has an excellent performance in the prediction of
game and pause states. It can be used to reduce SS stimulation
during the development phase of a VR game. For example,
when compared to existing real-time SS detection methods in
the literature [8], [9], the model provides developers with a
low-cost, simple, and efficient solution to locate and remove
possible SS stimulation aspects during game development or
adding ways to mitigate them in the game. It can predict real-
time SS events for players who are highly sensitive to SS
in some VR games. Using the model, developers can design
predefined actions or features in response to SS feedback to
improve user experience and gameplay. For example, the game
difficulty can be automatically adjusted to a lower level when
SS is predicted.

Prior research has suggested that 1PP VR games can produce
more stimulation than 3PP VR games [22], [24]. Therefore,
it is helpful to explore 1PP games in more depth and collect
data from other types of 1PP VR games to see if the same
findings can be replicated and further insights discovered.
Further, to improve the efficiency and performance of SS
prediction, we need to compress current SS features to reduce
hardware requirements for real-time applications and attempt
to test different neural networks. Different length of input time
series is also worth further exploration due to the difficulty of
predicting SS in users with milder symptoms. One aspect that
may be useful is to consider using a simplified in-game SSQ
to get feedback from participants instead of using long blink
since it cannot reflect the actual level of SS, like the dynamic,
in-game approach used in [32], [49]. For example, in [49],
the researchers used an on-screen sliding scale (from 0 to 10)
to collect participants’ current level of sickness dynamically
while the game would still be running in the background. Their
results show that this collection approach is accurate enough
to reflect players’ SS to a large extent.

Furthermore, as the number of male and female participants
are not equal, we cannot draw any conclusion about the
influence of gender in SS and VR games. In the future, we
plan to extend our work and involve more female participants
and participants from other groups, like the elderly, to develop
models that are more gender-neutral and can be applied to
various population groups [50]. Moreover, the official SDK
of HTC VIVE Pro Eye does not mention or provide details
about the quality of the data capture. We plan to use more
professional eye tracking devices in future experiments. For
the model training aspect, we fed the data into the model
at the frame level to avoid missing parts of SS events for
continuous prediction. However, the predicted errors at the
frame level can mislead the users. In the future, we will apply
a filter to the results from the frame-level prediction or use
a longer interval for the input data. For the model evaluation
aspect, feature selection was done by combining different
data types due in part to the difficulty of determining the
features’ importance for LSTM (see subsubsection IV-B4). In
the future, a more standard feature selection strategy will be
helpful in a new model architecture that can support feature
importance calculation. Furthermore, subjective experiments
will be conducted to test the effect of the model in actual
applications.

VI. CONCLUSION

In this paper, we presented an experiment and model
performance for real-time Simulation Sickness (SS) prediction
based on players’ eye movement plus in-game character
movement data collected during gameplay in VR games. We
posed two hypotheses from our literature review: (1) H1: Eye
tracking data can be used to predict SS since SS may cause
negative eye movement; and (2) H2: Character movement data
can be used to predict SS since intense character movement
may cause SS. We used three different VR games to produce
enough SS stimulation during gameplay in the collected data.
The evaluation of our model supports our hypotheses and shows
that it can achieve high levels of performance and accuracy
in SS prediction for players who are highly sensitive to SS.
The model can predict SS in real time with an accuracy of
83.4% for players who suffer from severe sensitivity to SS.
Our results suggest that our prediction method can be used to
predict SS for VR games in real time. The approach and model
are simple yet effective in predicting SS during gameplay for
VR games.
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