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ABSTRACT

Hand-based interaction, such as using a handheld controller or mak-
ing hand gestures, has been widely adopted as the primary method
for interacting with both virtual reality (VR) and augmented reality
(AR) head-mounted displays (HMDs). In contrast, hands-free inter-
action avoids the need for users’ hands and although it can afford
additional benefits, there has been limited research in exploring and
evaluating hands-free techniques for these HMDs. As VR HMDs
become ubiquitous, people will need to do text editing, which re-
quires selecting text segments. Similar to hands-free interaction,
text selection is underexplored. This research focuses on both, text
selection via hands-free interaction. Our exploration involves a user
study with 24 participants to investigate the performance, user ex-
perience, and workload of three hands-free selection mechanisms
(Dwell, Blink, Voice) to complement head-based pointing. Results
indicate that Blink outperforms Dwell and Voice in completion time.
Users’ subjective feedback also shows that Blink is the preferred
technique for text selection. This work is the first to explore hands-
free interaction for text selection in VR HMDs. Our results provide
a solid platform for further research in this important area.

Keywords: Text Selection, Virtual Reality, User Study, Hands-free
Interaction

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction paradigms—Virtual reality;
Human-centered computing—Human computer interaction (HCI)—
interaction techniques; Human-centered computing—Interaction
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1 INTRODUCTION

Today’s virtual reality (VR) and augmented reality (AR) head-
mounted displays (HMDs) predominately prioritize hand-based in-
teraction via a handheld controller or hand/finger gestures. Despite
its functional advantages and wide adoption, relying on hands for
interaction can be impractical and at times impossible in many
task scenarios, for instance, in manual assembly and manufacturing
tasks [2, 4], emergency responses [33], text entry activities [31, 32]
and many others [35, 56]. In addition, users who have hand/arm
impairment are unlikely to be able to use their hands to hold a
controller or perform hand gestures accurately. An efficient and
usable hands-free interaction method would be the most convenient
and practical solution in scenarios where hands-based interaction is
impractical. There have been some attempts to explore hands-free
interaction for HMDs for text entry [31, 32], system control [46, 54],
and rapid activation of glanceable objects [29]. However, there is
very limited attention to text selection tasks for VR HMDs.

Text selection is an essential task when reading text content such
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as newspapers, magazines, and academic papers to highlight im-
portant elements for later reference or to copy/cut and transfer the
content to another document, application, or platform. It can also be
useful when coding in immersive environments with an unlimited
screen size. While there has been some work on text selection in
HMDs, it is not based on hands-free interaction. For instance, EYE-
ditor [12] uses a ring mouse for cursor navigation and text selection,
where a button is used for placing the cursor before and after a text
fragment to be selected while the selection is made via a touchpad.
Lee et al. [27] have employed a force-sensitive smartphone as their
input device, where users exert a force on a thumb-sized circular
button to select the desired text fragment. Similarly, Darbar et al. [7]
have explored the use of a smartphone as the input mechanism for
text selection in AR HMDs. They found that continuous touch is
more efficient than discrete touch, spatial movement, and ray cast-
ing. These methods all employed an external handheld device for
accomplishing text selection. In this research, we are interested in
evaluating and comparing hands-free interaction methods for text
selection in HMDs. As described earlier, hands-free interaction is
helpful in many scenarios where hands or handheld controllers are
not available or impractical to use.

Interacting with virtual content in HMDs usually requires (1) a
pointing mechanism for the identification of the objects to be se-
lected priors to interact with them [45,52], and (2) a selection mecha-
nism (e.g., signal/command/action) to indicate the selection [34, 55].
In this study, we focus on head-based pointing as our primary point-
ing method as it is a mature and cost-effective way to control a
cursor and has been widely adopted as a standard way for pointing
at virtual objects in HMDs for hands-free interaction [25]. Studies
have demonstrated that head-based pointing is accurate, comfort-
able, and convenient [6,24,25]. However, head-based pointing lacks
an intrinsic mechanism to confirm a highlighted/identified selec-
tion [10]. To enable selection with head-based pointing, this work
first explores potential selection mechanisms (including dwell, eye
blinks, voice (HumHum: first-letter-hum plus last-latter-hum, and
Hummer: continuous humming), neck forward/backward motions)
that are available in the literature and can be used for text selection
in HMDs. It then, through pilot studies and a set of three usability
criteria, narrows them down into three suitable candidates (dwell,
eye blinks, voice-hummer) for the final experiment. Our results
with 24 participants suggest that eye blinking is the best hands-free
selection candidate as it has the fastest performance, best accuracy,
highest experience, and lowest workload.

The main contribution of this work is a first formal evaluation
of three hands-free text selection mechanisms for VR HMDs in
terms of their performance, user experience, and workload. While
a recent paper has explored text selection techniques in VR [48],
their techniques are non-hands-free and are based on hand-based
and controller-based interaction. As such, our work can serve as the
foundation for further research linking text selection and hands-free
interaction.

2 EVALUATED SELECTION METHODS

In this section, we described the selected hands-free methods evalu-
ated in this work. They were developed in Unity (v2019.4.10f1).



2.1 Selection Methods
We implemented and tested the following methods in pilot trials to
determine their suitability for the main experiment.

2.1.1 Dwell
The most commonly used hands-free selection method is the dwell
technique [22]. It was originally developed to avoid the effects of
eye-tracking jitters for eye gaze interaction and has also been widely
tested in various 3D interaction tasks, e.g., text entry [32, 47, 50],
rapid activation [29], and system control [54]. Therefore, we have
included this technique as the baseline technique. With the Dwell
technique (Dwell for short), the user starts the selection of the desired
text fragment by dwelling (staying or hovering the pointer on an
area for 1s) at the beginning of the first letter and ends the selection
by dwelling (1s) again at the end of the text fragment. Determining
the dwell time is important because if it is too long, it will make
interaction inefficient unnecessarily but if it is too short it can lead to
high errors and a stressful interaction. We first checked prior studies
(from text entry in AR/VR, for example, [16, 31, 38, 47]). It ranges
from 400ms to 1s. We run some pilot tests with several possibilities
within this range and found that 1s is the most optimal dwell time.

2.1.2 Eye Blinks
Eye blinking has been explored and used frequently in assistive tech-
nologies [5, 14] and has been lately incorporated into HMDs for text
entry [32] and rapid activation of glanceable information [29]. Lu et
al. [32] found that using eye blinks (of both eyes) outperforms Dwell
in text entry tasks in VR regarding performance and experience,
while Lu et al. [29] suggested that blinking is preferred by users
when accessing information in the real world in AR.

Although eye blinks (Blinking for short) is a promising selection
mechanism, it requires add-on or built-in eye trackers for HMDs,
which could be an issue with earlier generations of HMDs. However,
manufacturers are now integrating the eye-trackers with their HMDs
(e.g., HTC VIVE Pro Eye, Pico Neo 2 Eye, FOVE, HoloLens 2,
Magic Leap 1, and LooxidVR), and there is now increasing interest
in using eye data for interactive operations [55], for example, Blink-
ing for confirming a selection [29, 32]. Eye-tracking capabilities
will likely be standard in future HMDs and, as such, Blinking is
important to consider now.

In our implementation, the user blinks both eyes at the beginning
of the first letter to start the selection and then blinks again at the
end of the last letter to complete the selection. Blinking of the two
eyes (instead of the left/right eye) is used based on findings in [32],
whose text entry experiment shows that the accuracy of using two
eyes is near 100% (compared to 79% with the left eye and 69% with
the right eye). Also, the literature suggests that a natural blink could
last from 100-400ms depending on the situation. In VR, the blinking
frequency is even higher [17]. Therefore, we set 400ms as a minimal
threshold to filter out natural and unintentional blinks. Our pilot
tests suggest this threshold works well.

2.1.3 Voice
Voice activation has been used as an input modality in various user
interfaces. There are two types of voice-based interactions: (1) voice
command [49], and (2) nonverbal commands, like humming [20]
which rely on sound volume changes. Voice commands can be
powerful but also come with many drawbacks, for instance, (1)
voice recognition takes time (i.e., longer than nonverbal command
recognition) and (2) people with speech disorders or with certain
cognitive impairments cannot use it properly [37]. On the other
hand, nonverbal commands that use sound volume can be easily
detected and is much faster to process. Therefore, in this study, we
focus on exploring nonverbal commands. We have followed [20] to
implement HumHum (a short hum at the first and the last letter of the
text fragment) and Hummer (continuous humming from the first to

Table 1: Rating for each usability criteria regarding the four selection
mechanisms identified from the literature (0-3 ticks indicate ratings
from worst to the best). UC1: Simple, easy, and fast to use; UC2:
Minimal error rate and workload; UC3: Social acceptability.

Mechanisms UC1 UC2 UC3

Dwell DDD DDD DDD
Eye blinks DDD DDD DDD
Voice DD DDD D
Neck - - -

the last letter of the text fragment) for text selection, with a volume
threshold of 60db. We decided to only include Hummer in our ex-
periment as our pilot results, in line with [20], showed that Hummer
outperformed HumHum in performance and user experience.

2.1.4 Forward/Backward Neck Motions
Cursor movements can be controlled using lateral head motions or
rotations. Forward and backward movements (or the depth dimen-
sion) could in theory also be used for activation or selection [32]. Yu
et al. [54] proposed DepthMove for VR which utilizes head forward
and backward movements to indicate selection. They found that
DepthMove is faster than dwelling (with a 1 dwell time) to select
objects in 3D environments. This approach has also been explored in
adaptive interfaces to adjust the level of detail given to users [9], to
calibrate proximity-aware interactions [18], and to enter text [30,32].
In this study, we also implemented this method, followed the imple-
mentation in [54] and [32], and tested its performance and usability
in pilot trials. Our pilot results show that these types of head mo-
tions are not suitable for text selection in VR because these types
of motions are not precise enough when dealing with text content
and, more importantly, participants dislike them as they found them
tiring and uncomfortable to perform. Similar to findings from [29],
participants found the motions not so acceptable to perform in public.
Therefore, we did not include this in our experiment.

2.2 Usability Criteria
In this section, we describe the following three usability criteria
(UC) to determine the usefulness and suitability of each selection
mechanism and, hence, to help narrow the scope of possible head-
based text selection mechanisms for VR HMDs.

• UC1: Simple, easy, and fast to use. Selection usually goes
together or complements pointer movement. With users con-
trolling the pointer with their heads and paying attention to the
highlighted text, selection should simple and straightforward
so that it is possible to perform the two tasks almost at the
same time. These two-step processes should be fast.

• UC2: Minimal error rate and workload. Head-based in-
teraction should be accurate, comfortable and convenient to
perform [24, 25], it is ideal for the selection mechanism to
minimize the workload during text selection and have some
degree of precision while allowing fast interaction.

• UC3: Social acceptability. While HMDs are designed for
individual users, their interactions are often quite noticeable.
As prior research has shown [1,36,42], the social acceptability
of interactions between HMDs and mobile devices can be an
important factor in determining their adoption and usability.

The rating process of the usability criteria of the four selec-
tion mechanisms (i.e., Dwell, Eye Blink, Voice, Neck; see Section
Sect. 2.1) was guided by findings reported in the literature and a
pilot study. We used a 4-point Likert scale (with 0 indicating the



Figure 1: (a) A screenshot of the interface of the experiment envi-
ronment which was used for all conditions. An ‘instruction panel’ is
located on the left side, slightly tilted towards the user. The ‘interac-
tion panel’ is located in the center, slightly tilted towards the user. Its
design is based on recommendations from prior related work. (b) A
picture of a participant doing the experiment with the HTC VIVE Pro
Eye headset.

worst and 3 the best). A summary of the rating for each selection
mechanism can be found in Table 1. From the analysis of prior work
together with the pilot study results, neck motions do not meet any
of the criteria and were not considered further in the experiment.
Other than the neck approach, Dwell, Eye blink, and Voice all meet
at least two UC and hence are considered further and integrated into
the experiment stage. This table will be revisited based on the results
of our user study (see Table 3 in the Discussion section below).

3 TESTBED ENVIRONMENT

Figure 1 shows the test environment, which was also developed in
Unity (v2019.4.10f1). An ‘instruction panel’ is located on the left
side, where participants can see the text that needs to be selected.
The ‘interaction panel’ is located at the center, where participants
need to use each technique to select text fragments. In addition, two
buttons are provided: ‘Delete’ for deleting the wrong selection, and
‘Next’ for moving to the next trial.

The following parameters are set based on the recommendations
from previous studies and then further tested and agreed upon by 5
users from a pilot study. We controlled the length of the materials to
be between 9-12 lines, with each line having around 40 characters
with spaces [43], in both panels. The plane is set at 2.6m which
our pilot participants have found to be suitable. 2.6m is also the
recommended reading distance by [8]. For the text style, we used
Sans-serif Arial with a light color [8]. Angular size was set as 1.8◦,
which was within the recommended range suggested by [8].

Visual support and feedback is provided in four ways: (1) The
end of the ray is akin to a cursor, (2) changing the color of the
selected text to yellow, (3) changing the color of the cursor when a
selection was started/stopped, and (4) a visual indicator is provided
for showing dwell progress. We did not display the ray because users
from our pilot studies suggest the cursor alone is more effective than
a combination of the ray and the cursor in helping them understand
where they are pointing. In addition, they believe a head ray makes
them feel overwhelmed because there are many visual changes on
the display.

4 EXPERIMENT

4.1 Participants and Apparatus
24 participants (12 males, 12 females; aged 19-26) with a mean age
of 21.75 (SD=1.66) from a local university campus volunteered to
participate in this experiment. They all had normal or corrected-to-
normal vision and did not have any difficulties moving their head
or had any health issues that could affect their participation in the
project. 21 of them have experienced VR HMDs, but only 9 were
regular VR users (weekly) and 4 of them had interacted with the

Figure 2: Screenshots of an example of short (a), medium (b), and
long (c) text fragments used in our experiment.

device used in this experiment, but they were not regular users of
the HTC VIVE Pro Eye.

The experimental application was run on a computer with an i7
processor, 16GB RAM, and an NVIDIA GTX 2080 Ti graphics card.
An HTC VIVE Pro Eye VR headset was used in the experiment,
which has a resolution of 2880 × 1600 pixels, 90 Hz refresh rate,
and 110° (diagonal) FOV. The built-in Tobii eye-tracker was used to
detect eye blinks with data transmission at 120Hz. The experiment
was conducted in a quiet office room (30db). Participants were
accompanied by one researcher and sat on a comfortable office chair
during the experiment.

4.2 Design and Tasks
The experiment followed a one-way within-subjects design with
Interaction Techniques (Dwell, Blink, Sound; see Sect. 2.1 for their
implementation details) as the independent variable.

For each condition, participants needed to complete 3 training
trials (1 short, 1 medium, and 1 long text fragment; see Figure 2
for examples of each) and 27 trials (9 short, 9 medium, and 9 long
texts) which were randomly sampled from a corpus of standardized
English reading assessment [39]. Each selection target would only
appear once in a specific condition. The order of the interaction
techniques was counterbalanced across participants to avoid learn-
ing effects. Excluding the training texts, we collected 1944 trials
(24 participants × 3 interaction techniques × 27 texts). Although
the local area had nearly no local COVID-19 cases for 12 months
before the experiment, we sanitized the device before and after each
participant’s turn and followed extra safety measures to ensure the
safety of the participants and researchers (e.g., wearing a mask and
staying at a safe distance and has good ventilation).

4.3 Procedure
Participants were briefed on the goal of the research and the experi-
mental procedure before the experiment began. Then, they needed to
sign the consent form to participate in the experiment and filled out
a demographic questionnaire (e.g., age, gender, and experience with
VR). Before each condition started, the corresponding text selection
method was explained to the participants, who then had a practice
session with three warm-up selection tasks before the experiment
stage (with 27 text selection tasks). Error correction was allowed by
using the delete button in the VR scene (see Fig. 1). The order of the
conditions was balanced across participants. After each condition,
participants needed to fill out a post-condition questionnaire (NASA-
TLX [19] and UEQ [26]). Once they completed the experiment, they
needed to complete a post-experiment questionnaire and a structured
interview. The whole experiment lasted around 30-40 minutes for
each participant.

4.4 Measurements
We collected the following measurements to assess participants’
performance and experience:

• Objective: (1) Task-completion time: The task completion time
for each trial is defined as the time from when the cursor first



hovers over the first target letter to the time they complete the
correct selection. As such, the time spent on blinking, increas-
ing the sound volume, and dwelling would be included for
analysis. (2) Total error rate: (the number of wrong sentences
at the end + the number of deletions)/total number of attempts,
(3) not corrected error rate: the number of wrong sentences at
the end/total number of sentences.

Total error rate and not corrected error rate are measurement
concepts derived from text entry studies [40]. The two mea-
surements allow us to calculate the mistakes made during
the text selection process in the data analysis (as participants
are allowed to delete their selections if needed), instead of
just counting how many mistakes were observed in the final
recorded data. These two measurements provide a more com-
plete picture of how many errors were made by the participants
during the text selection tasks (deletions plus the number of
error selections at the end) similar to text entry activities. Both
completion time and error rates would help assess if and how
well an approach meets UC1 and the first part of UC2 (see
Sect. 2.2).

• Subjective: NASA-TLX Questionnaire [19] to measure work-
load, User Experience Questionnaire (UEQ) [26] to measure
user experience, and collect participants’ comments on the
advantages and disadvantages of each technique plus their
ranking of these. We used NASA-TLX and UEQ as they
are commonly used to gather feedback from users in VR re-
search [41, 47, 51]. The NASA-TLX, UEQ, and participants’
comments would allow determining how well each approach
meets the second part of UC2 and UC3 (see Sect. 2.2).

4.5 Results
Shapiro-Wilks tests and Q-Q plots were used to check if the data
had a normal distribution.

Performance analysis. For normally distributed data, we em-
ployed two-way repeated-measures ANOVAs with Interaction Tech-
niques (Dwell, Blink, Voice) and Sentence Lengths (short, medium,
long) as the within-subjects variables. For data that were not nor-
mally distributed, we processed the data through Aligned Rank
Transform (ART) [44] before using repeated-measures ANOVAs
with the transformed data.

Experience analysis. For normally distributed data, we employed
one-way repeated-measures ANOVAs with Interaction Techniques
as the within-subjects variable. For data that were not normally
distributed, like the performance analysis, we first processed the
data through ART and then use repeated measure ANOVAs with the
transformed data.

For both analyses, we used Bonferroni correction for pairwise
comparisons and Greenhouse-Geisser adjustment for degrees of
freedom if there were violations of sphericity. All tests were with
two-tailed p-values.

4.5.1 Performance
Task completion time. In total, we collected 1944 trials (24 partic-
ipants × 3 interaction techniques × 27 texts) besides the training
trials. To analyze task completion time, we discarded trials in which
participants made a wrong selection (320 error trials or 16.4%), and
removed outliers, which were those trials whose selection time was
more than three standard deviations from the mean (mean ± 3std.)
in each condition (18 trials or 1.0%).

Table 2 shows the task completion time for each technique, where
Blink is the fastest and Voice is the slowest technique. There was a
statistically significant difference between Techniques on completion
time (F2,184 = 51.427, p < .001). Post-hoc analysis with Bonferroni
correction suggested that Blink outperformed Dwell (p < .001) and
Voice (p < .001), while Dwell outperformed Voice (p < .001).

Figure 3: UEQ subscale ratings of the tested methods concerning
comparison benchmarks.

We also observed a significant difference between Sentence
Lengths on completion time (F2,184 = 10.831, p < .001). Post-hoc
analysis with Bonferroni correction suggested that participants com-
pleted Small faster than Medium (p = .005) and Long (p < .0001).

Total Error Rate (TER). Among these three techniques, Dwell
achieved the best results (M=7.00%, SD=6.69%) and Voice had the
worst results (M=11.40%, SD=9.39%). Table 2 shows more de-
tailed results of TER. There was a statistically significant difference
between Techniques on TER (F2,184 = 8.413, p < .001). Post-hoc
analysis with Bonferroni correction suggested that Voice was sig-
nificantly worse than Blink (p = .0015) and Dwell (p = .0014).
We did not observe any significant difference between Lengths
(F2,184 = 0.367, p = .693) nor the interaction of Techniques ×
Lengths (F4,184 = 0.554, p = .554).

Not Corrected Error Rate (NCER) In general, among these
three techniques, Voice achieved the lowest NCER (M=0.67
%, SD=1.98%) and Blink had the highest NCER (M=1.17 %,
SD=2.68%); see Table 2 for more details. There was a statisti-
cally significant difference between Techniques on NCER (F2,184 =
6.935, p = .0012). Post-hoc analysis with Bonferroni correction
suggested that Blink was worse than Dwell (p = .0048) and Voice
(p = .0041). We could not find any significant effect of Lengths
(F2,184 = 0.743, p = .477) on NCER and the interaction of Tech-
niques × Lengths (F4,184 = 0.344, p = .848) on NCER.

4.5.2 User Experience

UEQ. For average scores, Blink achieved the best results (M=1.51,
SD=0.23), Voice was the second (M=1.18, SD=0.39), and Dwell
had the worst results (M=1.14, SD=0.36). However, ANOVA
tests showed no significant difference between Techniques (F2,46 =
2.228, p = 0.119). Regarding the UEQ subscales, ANOVA tests
yielded a significant difference between Techniques on Attractive-
ness (F2,46 = 4.093, p = .023), Efficiency (F2,46 = 3.837, p = .029),
and Novelty (F2,46 = 4.192, p = .021). Post-hoc pairwise compar-
ison suggested that Voice had a significantly higher score than
Dwell in Novelty (p = .030). However, post-hoc tests did not
yield any difference between Techniques regarding Attractiveness
and Efficiency. We could not find any significant effect of Tech-
niques on Perspicuity (F1.445,33.242 = .953, p = .369), Dependability
(F2,46 = 1.189, p = .314), and Stimulation (F2,46 = .520, p = .598).

Details of each UEQ subscale score can be found in Figure 3.
Overall Blink was rated Above Average to Good; Dwell was rated
Below Average to Above Average, and Voice was rated from Bad to
Excellent (mainly Below Average to Above Average).

Workload. For overall task workload, Blink was rated the best
(M=21.46, SD=16.10), Dwell the second (M=30.47, SD=19.05),
and Voice the worst (M=35.45, SD=20.72). ANOVA tests yielded a
significant difference between Techniques (F2,46 = 6.173, p = .004).
Post-hoc pairwise comparisons indicated that users experienced less
overall workload with Blink than with Voice (p = .013).



Table 2: Performance data for each Interaction Technique among three Sentence Lengths, mean (SD). The ranking of each condition is indicated
with Roman numerals (I: light green ; II: darker light green ; and III: blue-green ).

Performance Metrics Sentence Length Blink Dwell Voice

Task completion time Small I: 2.32 (0.50) II: 2.51 (0.36) III: 3.16 (0.94)
Medium I: 2.32 (0.57) II: 3.03 (0.54) III: 3.52 (0.90)
Long I: 2.60(0.69) II: 3.10 (0.46) III: 3.54 (1.12)

TER Small I: 7.4% (9.3%) II: 7.9% (7.1%) III: 11.6% (9.6%)
Medium I: 6.9% (6.4%) II: 7.3% (6.4%) III: 12.1% (9.8%)
Long II: 8.8% (9.5%) I: 5.8% (6.4%) III: 10.5% (8.7%)

NCER Small III: 1.2% (2.5%) II: 1.1% (1.7%) I: 0.8% (2.4%)
Medium III: 1.2% (2.8%) I: 0.9% (1.9%) II: 1.1% (2.3%)
Long III: 1.1% (2.7%) II: 0.3% (1.0%) I: 0.1% (0.7%)

Figure 4: The mean responses for the 6 components of the NASA
TLX questionnaire. Error bars indicate a 95% confidence interval.

Regarding each NASA-TLX workload subscale, ANOVA tests
yielded significant effects between Techniques on Physical (F2,46 =
4.535, p = .016), Performance (F2,46 = 5.675, p = .006), Mental
(F2,46 = 3.978, p = .026) and Frustration (F2,46 = 3.847, p = .029).
Post-hoc pairwise comparisons suggested that participants believed
Blink led to less workload than Voice regarding (1) Physical (p =
.040), (2) Performance (p = .016), and (3) Mental (p = .034). Post-
hoc analysis yielded no significant difference between Techniques
regarding Frustration. Details of NASA-TLX workload subscales
can be found in Fig. 4.

Ranking. Users’ rankings show a preference for Blink (17 ranked
it first while 6 ranked it second) among the three techniques. It was
followed by Dwell (7 ranked it first while 11 ranked it second). Voice
was generally rated the worst (8 ranked it second and 16 ranked it
third).

4.5.3 Qualitative Feedback

In general, most participants stated positive comments about Blink:
”fast” (N=8), ”simple” (N=3), ”convenient” (N=7), and ”accurate”
(N=6). There was one negative comment: ”frequent blinking caused
eye discomfort” (N=1). Similarly, participants comment positively
about Dwell: ”convenient” (N=5). Some commented that it was
”hard/difficult to stay still” during selection (N=4). In addition, some
participants (N=5) described Voice as ”creative”, but more said it
as ”embarrassing” and as such, they were not so willing to use it in
”public places” (N=7) due to the need to constantly make noises. In
general, participants said that both Blink and Dwell were socially
acceptable (that is, they would use them in front of others). On the
other hand, they would use Voice in private places without anyone
around them.

5 DISCUSSION

In general, a dwell-based approach is a typical, default choice for
hands-free interaction because it is relatively easy to use and does
not require additional hardware. However, dwell has inherent issues,
for example, if dwell time is long, it makes interaction inefficient
and if it is short, it can lead to errors [23, 32]—in short, users have
less control over the process. With the rapid advances of HMDs,
new sensing capabilities have been added to these, particularly eye-
tracking, which should be more and more standard. In this work,
we focused on comparing the dwell-based selection mechanism
by using eye blinks and voice. Both of them are relatively easy
to do, give more control to users, and, more importantly, can be
captured by a wide range of HMDs without additional hardware
requirements or external sensing (handheld) devices, unlike some
recent work [7, 27, 28], which can add extra costs to users and
complexity to the interaction process.

Overall, our results suggest that Blink has the best performance
(speed and accuracy) in text selection tasks and outperforms Dwell
and Voice, which aligns with [31, 32] for hands-free text entry tasks
in both AR and VR, where Blink outperforms Dwell. Voice has
the worst performance in task completion time and total error rate.
Based on our observations, we believe the reasons could be due
to (1) users’ unstable voice volume control: Keeping the voice
volume at/above 60db during the selection process can be difficult
for participants, which has led to an increase in errors, (2) users need
to inhale: users are only able to exhale when making a sound using
the Hummer technique; if users are not well trained for and familiar
with this technique, they have to stop in the middle of the selection
process to inhale oxygen. Regarding the effect of sentence length on
performance, we found that the length of a sentence has a significant
effect on the completion time, as longer sentences require more time
to complete their selection.

In line with [32], we could not find any significant difference
between Blink and Dwell regarding user experience. In general,
Blink has the lowest workload ratings and outperforms Voice (overall
workload, physical, performance, and mental). We could not find
a significant difference between Blink and Dwell, suggesting that
intentional eye blinks might be as acceptable as Dwell regarding
workload. In summary, Blink should be given priority for the lowest
workload.

In Sect. 2.2 we described three usability criteria (UC) that we
have identified from the literature. Based on the above results, we
revisited Table 1. Of the three mechanisms, Blink is the only one
that has kept the same ratings unchanged. Dwell received a slightly
lower rating for UC1 and UC2. Voice has been found to be not so
acceptable in social settings, to be difficult to use, and lead to higher
errors and workload.



Table 3: Rating for each usability criteria regarding the three selection
mechanisms tested in our experiment (0-3 ticks indicate ratings from
worst to the best). UC1: Simple, easy, and fast to use; UC2: Minimal
error rate and workload; UC3: Social acceptability.

Mechanisms UC1 UC2 UC3

Dwell DD DD DDD
Eye blinks DDD DDD DDD
Voice D D -

5.1 Key Takeaways and Lessons
• Blink is a viable solution for hands-free text selection in

VR/AR HMDs; it could possibly be useful for text editing
in general as it has also been found to work well for text en-
try [31, 32]. It could be set as default if an eye tracker is
available because it has the best performance, good user expe-
rience, and low workload/error rate, and is acceptable in public
settings.

• Dwell is an acceptable hands-free method and should be used
when an eye-tracker is unavailable or when the HMD does
not have eye-tracking capabilities (which is still a common
scenario for low-cost but popular VR HMDs such as Meta
Quest 2).

• Voice input such as nonverbal volume-based input should be
avoided due to the poor performance and its perceived socially
unacceptability as mentioned by participants.

5.2 Limitations and Future Work
There are some limitations of this study. Due to a lack of standard
performance metrics for this type of study, we measured the speed
through optimal task completion time from pointing selection tasks
[21,53] and measured error rates using the concepts of total error rate
and not corrected error rate derived from text entry studies [40, 45].
Given the limited work on performance metrics for text selection,
future work is needed to establish standard metrics for text selection
experiments.

In addition, some design considerations are derived from prior
related work (e.g., dwell duration, white text highlighted in yellow,
display of the ray, interaction distance) and determined through with
pilot study users. Future exploration of these factors would be useful
for the development of new techniques that can improve user per-
formance further and increase their acceptability of the techniques.
We only included university students as our participants in this study
and future work can use a more inclusive and diverse population
(e.g., impaired and elderly users who might have difficulty using
their hands). Future work can also involve longitudinal explorations
of text selection approaches that consist of more sessions (e.g., 1 or
2 sessions for 4-5 days like some studies that explored text entry in
VR/AR [13, 31, 47, 51]). Also, as eye trackers become a standard
feature in many HMDs (e.g., Pico Neo, HoloLens 2, Magic Leap),
it would be useful to explore eye gaze in the future and compare it
against head-based pointing.

The movement toward an office that is more virtual and immer-
sive [15] is gaining rapid momentum with the development of the
Metaverse, where users need to use common office applications that
depend heavily on text editing (e.g., in spreadsheets [11] and presen-
tations [3]). However, text editing in VR/AR, of which text selection
is an important aspect, is far behind in the level of efficiency and
usability to which people are used in less immersive, traditional
platforms, like desktop and laptop computers. In the future, we plan
to extend our work on text selection, still focusing on hands-free
approaches as this work shows they are usable and efficient, and
integrate the results into the ecosystem of text editing, especially

in combination with text entry techniques that are also hands-free
(e.g., [31, 32, 47]).

6 CONCLUSION

In this work, we have implemented three selection mechanisms
(Voice, Blink, Dwell) derived from our review of the literature on
hands-free interaction for virtual reality (VR) head-mounted displays
(HMDs) for text selection tasks. Our results with 24 participants
showed that an approach based on eye blinks is the best hands-free
selection candidate as it has the fastest performance, best accuracy,
highest experience, lowest workload, and positive social accept-
ability. It is followed by a dwell-like approach, which has better
accuracy than using voice. According to our results, eye blinks can
be an excellent hands-free selection mechanism and should be used
for text selection in VR if an eye tracker is available.
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